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Objectives

Composite wings-have become increasingly popular in recent years due to significant

potential of weight savings and stiffness tailoring. For aircraft wings made out of composite

materials, aeroelastic tailoring presents an opportunity to enhance the aircraft performance by

utilizing their unique stiffness and strength properties. Therefore, the goal of the current researh

are as follows.

(1) Development of a new composite beam modeling technique to represent the principal load-

carrying member in the wing. The theory includes the effect of through-the-thickness shear

deformation which is important in laminated composites and is not included in the classical theory.

A refined higher-order theory is used to describe the displacement field in each wall and

appropriate boundary conditions are imposed to ensure the satisfaction of stress-free boundary

conditions at the free surfaces. The theory is implemented using the finite element method.

(2) Development of a formal design optimization procedure to investigate the effect of composite

tailoring on aeroelastic stability and structural characteristics of airplane wings. The composite

structural analysis is coupled with unsteady aerodynamic analysis to solve the coupled aeroelastic

equations of motion. The unsteady aerodynamic computations are performed using a panel code

based on the Doublet Lattice Method and flutter/divergence speed is obtained using the V-g

method. A hybrid optimization technique is implemented for the optimization to simultaneously

include continuous and discrete design variables.

(3) Use the developd procedure to perform design optimization studies on realistic airplane

configurations to investigate the various aeroelastic/structural/dynamic design issues.

Approach

Structural Analysis

The accurate and efficient prediction of structural response is very important for the

investigation of aeroelastic tailoring using composite structures. The analysis of aircraft wings can

be accomplished either through a detailed investigation of structural sections comprising spars,

webs, ribs etc., or through the use of reduced structural models. The detailed analysis is

computationally very expensive and is often impractical in design optimization and/or trade-off

studies. Reduced structural models are more frequently used which include equivalent plate

models and box beam models. Between these two, box beam models more closely represent real

wing structures and more accurately account for elastic couplings.



A rectangularcompositeboxbeammodelwith taperandsweepis developedto represent
the load carrying memberof an aircraft wing (Fig.l). The single-celledcompositebox beam

modelis basedonahigher-ordercompositelaminatetheory[10] andaccountsfor thedistributions

of shearstrainsthroughthethicknessof eachwall. Thedisplacementfield for eachwall sectionis

describedby bending,warpingandin-planestretching.

For eachof the individual plates,the higher-orderdisplacementfield is definedin local
coordinatesystemasfollows (Fig. 2).

u(x,y,z,t) = Uo(x,y,t ) + Z_x(X,y,t )

+Z2_x(X,y,t) + Z3_x(X,y,t)

v(x,y,z, t) = vo(x,y,t) + Zgty (x, y, t )

+Z2_y (x, y, t) + Z3_y (x, y, t)

w(x,y,t) = w0 (x,y,t)
(1)

where u0, v0 and w0 denote the displacements of a point (x, y) on the midplane and Wx_and Vy

are the rotations of the normal to the midplane about the y and x axes, respectively. The higher-

order terms _,x , r,x, Cy and Cy represent beam warping in each plane. Making the assumption of

small displacements and rotations, a linear strain-displacement relationship is used. The following

constitutive relation is used for plates made of orthotropic materials.
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The higher order terms are determined using the condition that the transverse shear

stresses, %z and ayz, vanish on the plate top and bottom surfaces. For composite plates made up

of layers of orthotropic lamina, these conditions are equivalent to the requirement that the

corresponding strains be zero on the surfaces. By making substitution for Wx and Vy in terms of

Cx and Cy which are the shear angles at midplane about x and y axes respectively, the following

refined higher-order displacement field is obtained.
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Based on the above displacement field, a four-node plate element is developed.

In the finite element formulation, the plate displacements at the mid-plane, u 0 , v0and w 0

are interpolated by Hermite cubic functions and the shear angles, q_x and qby are interpolated using

bilinear functions. For a higher-order plate element, there are 11 degrees of freedom at each node.

The governing equations of motion for an individual plate is derived using Hamilton's

principle.

ftt,28[W -V +Wnc]dt=0

(4)

where U, V and W denote the kinetic energy, the strain energy and the work done by external

forces, respectively. Using the constitutive relations along with the strain-displacement relations,

the element stiffness matrix Ke, the mass matrix M e and the forcing vector F e are derived from

Eqn. 4 as follows.

K e = fVe BeTCmBe dVe

M e = Sve PNeTNedVe

F e = .{Ae NeTp(x, y, t)dA e

(5)

where v e and A e represent element volume and surface area, respectively and p denotes material

density. The matrix C,, is material stiffness matrix and p is the air pressure. Matrices Be and N e

relate the generalized coordinates to strains and displacements, respectively.

The construction of the box beam from plate elements is shown in Fig. 3. The quantities

u, v, and w are displacements along x, 3' and z axis, respectively and e×, es and 6 z are

rotations along these directions. To make stiffness transformation possible, continuity of

displacements and rotations are imposed at each of the four corners while the generalized forces
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correspondingto higher order warping terms areset to zero. Through the useof coordinate

transformation, thereducedstiffness matrix is expressedin theglobal form. Assemblyof the

elementmatricesleadsto {he following equationof motionfor a generalstructural-aerodynamic
system.

M2 + Cx + Kx = Q1 + Q2
(6)

where M, C and K denote global mass, damping and stiffness matrices respectively. The vector x

represents structural elastic deformation. The quantities Q_ and Q2 denote aeroelastic forces and

other forces due to gust, control surface motion etc. respectively

Aeroelastic Analysis

For aeroelastic stability, analysis, the damping C and the non-aeroelastic forces Q2

ignored. Assuming simple harmonic motion, that is, x = 2e i_ and (?1 = _ei_yields

(-co2M + K)Y = QI (7)

are

Q_ can be expressed as a linear combination of

Ql = q_F(ico)Y

2 as follows.

(8)

where F(ioo) is the aerodynamic influence coefficient. Substituting for Qj in Eqn (7) gives

(-co2M + K - q,,oF(ioo))2" = 0

(9)

Equation 9 represents an eigen value problem and the solution of

I-c02 34+ K-qooF(ico)l=O

provides the roots which determine the stability of the system.

artificial damping is introduced and Eqn. l0 is rewritten as

-co2M + (1 + ig)K - q_F(i_) = 0

(10)

To solve the above problem,

(11)

The solution of Eqn. 11 yields the variations of g and co with respect to q . At the flutter point,

the damping g=0.
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The V-g method of flutter prediction is the classical method which is widely used. In this

method, the aerodynamic forces need to be calculated for real co only. However, the results are

considered accurate only at the flutter point.

Hybrid Optimization

The inclusion of both continuous and discrete design variables significantly complicates the

optimization problem. This is because the discrete design variables are not compatible with

"traditional gradient based optimization methods. Similarly, the continuous variable is not

compatible with combinatorial optimization methods, such as branch and bound techniques, which

require discrete values to operate. Therefore, a hybrid optimization technique developed by

Chattopadhyay and Seetey which combines both types of design variables is used and is described

next.

The general continuous/discrete optimization problem can be mathematically stated as
follows.

Minimize f(¢'c, Od )

Subject to g(%,c'd)j < 0 where j = 1, 2 ..... NCON

Side constraints oq < _¢ < ¢'¢u

_d _ [qb_,, _2q, qb3, ..... ¢_,q ]

where f is the objective function, gj are the constraints, % are the continuous design variables and

_d are the discrete design variables which can be selected from among a set of q preselected

values. The hybrid optimization procedure is based on Simulated Annealing (SA) where the

design space is sampled by repeatedly perturbing the discrete design variables. At each iteration of

the SA procedure, the objective function is minimized with respect to the continuous variables

using a BFGS search algorithm. This significantly improves the efficiency of the hybrid algorithm

by, directing the search using the gradient information when available. The constrained problem is

formulated using a penalty function approach.

Results

The development of the higher order box-beam model has been completed. Comparisons

of the results have been made with experimental data (Chopra et al.), results from a quasi-analytical

method (Chopra et al.), and the variational asymptotica] approach (VABS, Hodges et al.). The



dimensionsof the testbeamsaredefinedin Fig. 4. Beamswith variousply lay-ups havebeen

evaluated,of which only symmetric lay-up resultsarepresentedhere(Figs. 5 and 6). The ply_
anglesfor thetopandbottomwalls are45° andthosefor thesidewalls are45°/-45°.This kind of

lay-upexhibitsbending-torsionalcoupling,hencea bendingloadalsogeneratesbeamtwist. For

the bendinginducedtwist, results from the presentmodel are closestto the test data. Good

correlationsarealso observedwith experimentsfor the bendingslope. Further resultscanbe
foundin Ref. 1.

A simple optimization problemhasbeenformulatedto study the effects of aeroelastic

tailoring. A standardelliptic staticaerodynamicloaddistributionhasbeenassumed.Theobjective

is to minimize theweight of theboxbeamwhichrepresentsthestructuralmemberof anairplane
wing. Constraintsareplacedon the flutter speedandthe maximum allowable stresses.The

flutter/divergence speed(Vf) is constrainedto begreaterthan450 knots equivalentair speed

(KEAS) ataflight conditionof Mach0.7at sealevel. TheTsai-Wufailurecriterion is imposedon

thecriticalply stressesattherootsectionwherematerialfailure ismostlikely to occur.

Resultsobtainedusingthehybrid optimizationprocedurearepresentedin Tables1and2

andin Figs. 7-10. Optimizationresultsarecomparedwith areferencedesign,which is selected

basedonengineeringjudgment. It shouldbenotedthattheoptimumdesignis independentof the
initial designdueto probabilisticnatureof thehybridoptimizationprocedure.Thepenaltyfunction

valueis presentedin Fig.7ateachiterationof thesimulatedannealingalgorithmwhich consistsof

severalBFGSevaluations.Both thetrial designsandthebeststatesofar arepresented.Initially,
theflutter constraintis violatedwhichresultsin very largevaluesof thepenaltyfunctionwhichare

not presenteddueto thescaleof thegraph.Theoptimumstateis reachedin lessthan100iterations

and theoptimizationprocedureis terminatedafter250 iterationssincenobetterdesigncouldbe
found.

Thereis a significant reductionin theweightof thestructuralmemberof thewing (32%,

Fig.8) along with a large improvement in the flutter speed (75%, Fig.9) due to the optimization.

The Tsai-Wu stress criterion is satisfied by the reference as well as the optimal design (Fig. 10).

Since the wing root chord for the reference and the optimal wings are nearly same (Table 2),

weight reduction is due to the smaller number of plies for the optimal wing. Through optimization

of the stacking sequence, even a lower wall thickness provides higher flutter speed.

Study of the frequencies and modes for flutter show important trends. For the reference

wing, the second mode, which is a coupled bending and lag mode with a natural frequency of 34

Hz, flutters at 29 Hz. The first torsion mode is the sixth mode with a natural frequency of 164 Hz.

7



At theflutter condition,thefrequenciesof thesecondandthesixthmodesalmostcoalesceandthe

sixthmodealsofluttersat aslightly higherspeed.For theoptimalwing, flutter occursfor thefifth

mode(at 74Hz), which is thefirst torsion modewith thenaturalfrequencyof 160Hz. The first

four modesarebendingor coupledbending/lagmodes.Thustheoptimizationessentiallystiffens
thebendingmodesto increasetheflutter speed.

Sincetheaspectratio andtaperratioarefixed for thisstudy,smallerrootchordalsomeans

smallerspanandlower wing area. The optimal valueof thewing root chord is very nearto the

minimum valuespecified to havehigh stiffness. This trend is expectedin the absenceof other

designconsiderationssuchaswing loading(whichaffectslanding/take-offspeed,maneuverability
etc.)andinternalfuel volume.

Future Work

The V-g methodof flutter prediction is only valid at the flutter point. Therefore,the s-

domain methodof flutter analysis,which providesbothpre- and post-flutter history, will be

adoptedandwill beintegratedwith thecompositestructuralanalysisprocedure.Furtherdetailsof

thes-domainmethodis givenin Annexure1. Thedevelopedanalysisprocedurewill thenbeused

within thedesignoptimizationloopto provideaeroelasticallytailoredwing designs.
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Table 1 WingParameters.

Reference Optimum
Numberof plies
Rootchord(in.)

Wall thickness(in)
StackingSequence

topandbottomwalls
- sidewalls

28
15.0
0.14

[00/900]14
[450/-450]14

18
15.4
0.09

[0°/45°]9
[0o/0o]9

Table 2. Frequencies and Modes

Mode Number

1

2

3

4

5

6

Reference Optimum

Mode Freq. Mode Freq.

(Hz) (Hz)

B 9.4 B 8.75

L, B 34.1 L, B 34.7

B, L 50.7 B, L 46.8

B,L 116.9 B 107.7

L 154.7 T 159.5

T 163.6 L,B 170.1

Flutter Point 2nd mode, 29 Hz 5th mode, 74 Hz

Legend: B Bending L - Lag T - Torsion

9



C

x . loadcarryingbox

Tw

beam

---.A

C t

'-_ A
]'c

7

(a)

A-A cross section

0.60c

load carrying box beam

7

(b)

Figure 1. Wing Geometry (a) top view (b) side view

10



r

Z, W

J y v

h:I:I_'SffSSS<3SSSS-_

Figure 2. Plate model

X, u, OX

.I

z4_ y

°1

Y 1

.._y

Z

3

II

2
I°

Figure 3. Beam construction

11



d

L/d=56 L/d=29

L (in) 30 30

d (in) 0.537 1.025

c (in) 0.953 2.060

Ply thickness (in) 0.005 0.005

Wall thickness (in) 0.03 0.03

Figure 4. Test beam dimensions
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Annexure 1

Flutter Analysis using the s-domain method

Equation of motion for a general structural-aerodynamic system is given as

MJ(+ C)(+ KX = QI+Q2 (1)

where M, C and K represent mass, damping and stiffness matrices respectively. Q1 and Q2 denote

aeroelastic, forces and other forces due to gust, control surface motion etc. For aeroelastic stability

analysis, damping C and non-aeroelastic forces Q2 are ignored. Laplace transform of the resulting

equation yields

(s2M + K)X = Ql(s) (2)

Q 1(s) can be expressed as a linear combination of X as

Ql(s) = q, F(s)X (3)

where F(s) can be regarded as the aerodynamic transfer function. Substituting for Ql(s) in

Equation (2) gives

(s2M + K - q_,F(s))X = 0 (4)

This is an eigen value problem and the solution of

s2M+K-q F(s)=0 (5)

gives the roots which determine the stability of the system. For stability, all real roots should be

negative. At flutter condition, one of the roots is purely imaginary. The main difficulty in solving

equation (5) arises in obtaining the aerodynamic transfer function F(s). It is assumed that F(s)

equals F(iw), where w is a real value (as for the V-g method). F(iw) is obtained from the Doublet

Lattice Method code mentioned earlier.

F(s) is expressed in Pad_ Approximant form

F(s) = a+ bs +cs 2 +_--
(XS

(6)
_s+r

and the coefficients are evaluated using a least square fit. Then equation (5) is solved in complex s-

domain to obtain the roots of the system. As mentioned earlier, the solution (frequency and

damping) is valid at all speeds, not just the flutter speed, unlike the V-g method. This method is

also advantageous in active control of aeroelastic systems.
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